Item.com.tr
Fine Tuning Lipoaspirate Viability forFat Grafting
J. Lauren Crawford, M.D.
Background: The efficient harvest of abundant viable adipocytes for grafting is
Bradley A. Hubbard, M.D.
of considerable interest. Hand aspiration, low-g-force, short-duration centrifu-
Stephen H. Colbert, M.D.
gation, and harvest of the lower sublayer of fat centrifugate maximize viable
Charles L. Puckett, M.D.
adiopocytes, but this process is cumbersome with conventional equipment. The
Columbia, Mo.
Lipose Corporation (Greenwich, Conn.) has produced special syringes, filters,
and a low-g-force centrifuge (Viafill system) to facilitate this process. The adi-
pocyte viability using this system is presented.
Methods: Six women underwent fat graft harvest using the Viafill system from
the lower hips (n ⫽ 6) and/or upper hips (n ⫽ 3). After centrifugation for 2
minutes at 50 g, the lower, middle, and top sublayers of the adipose layer were
analyzed for viable adipocyte counts using trypan blue vital staining. Additional
samples from standard power-assisted liposuction were obtained and analyzed
similarly.
Results: The mean difference in square-root transformation of cell counts
between the bottom sublayer of centrifuged fat and the middle sublayer was 0.95
(95 percent CI, 0.61 to 1.3), and the difference between the middle and top
sublayers was 0.67 (CI, 0.50 to 0.84). Thus, the bottom sublayer had approxi-
mately 2.5 to 3 times more cells than the top sublayer. The difference between
the hand aspirate samples and the power-assisted liposuction samples was sig-
nificant (1.62; CI, 1.35 to 1.90).
Conclusions: This study reconfirms the authors' early findings that atraumatic
harvest of lipoaspirate yields high cell counts and that adipocyte density is
greatest at the lowest sublayer of centrifuged fat. The Viafill system provides a
more efficient and user-friendly system for fat grafting while maintaining cell
counts similar to the authors' technique using conventional equipment.
Reconstr. Surg. 126: 1342, 2010.)
Fathasthepotentialtobetheidealsoft-tissue centrations exceeding those of bone marrow.8,9
filler because it is abundant, easily accessible,
The regenerative qualities of lipoaspirate stem
inexpensive, and host compatible, and be-
cells have already found clinical applications by
cause it can be harvested repeatedly. Successful
reversing the damage of radiation injury6,7 and as
and long-term results from free fat grafting used
a source of stem cells in tissue engineering.10 The
in soft-tissue augmentation have long been a goal
applications of adipose progenitor cells will un-
for plastic surgeons. A large array of applications
doubtedly continue to grow in number.
has been reported previously: cosmetic enhance-
The historical drawback to fat grafting has
ment and rejuvenation, body contour improvement,
been the unpredictable nature of its outcomes.
and reconstruction of scarred and radiation-dam-
The most probable argument for this phenome-
aged sites, among others.1–7 The realization thatfacial aging is partially a result of soft-tissue atro-phy has spurred renewed interest.
An exciting development has been the dem-
Disclosures: None of the authors holds a financial
onstration that lipoaspirate contains stem cell con-
position with the Lipose Corporation. The LiposeCorporation supplied funding for the facility fees
From the Division of Plastic Surgery, University of Missouri.
and equipment used in the liposuction procedures
Received for publication August 17, 2009; accepted April 2,
and the use and modification of the equipment
discussed. No professional fees were obtained from
Copyright 2010 by the American Society of Plastic Surgeons
the patients or the Lipose Corporation.
Volume 126, Number 4 • Fine Tuning Lipoaspirate Viability
non is Peer's cell survival theory.11 Simply stated,
hydrophilic coated disposable cannula (Tulip
the number of viable cells grafted correlates with
Biomed, San Diego, Calif.) and the 20-ml Viafill sy-
the ultimate volume of graft survival. Antiquated
ringe. Samples (15 to 20 ml) were harvested from
techniques have used traumatic approaches and,
each area, and these syringes were then placed in a
in retrospect, the poor or inconsistent results are
37°C warm water bath. After the hand-suctioned
not surprising. Using the Coleman technique or
specimens were taken, standard power-assisted lipo-
similar atraumatic approaches, acceptable and re-
suction (Accelerator-III; Byron Medical, Inc., Tuc-
liable resorption rates have been obtained.12–15
son, Ariz.; MicroAire Surgical Instruments, Char-
However, there is a large variability in the methods
lottesville, Va.) using 4-mm cannulas was performed
used in terms of harvest, processing, grafting
at the same site and fat was collected in 1.5-liter
method, and recipient location. In addition, there
lipoaspirate canisters using atmosphere negative
may be differences in the intrinsic quality of the
pressure. Lipoaspirate volumes ranged between 600
adipose tissue from person to person or regionally
and 1000 ml. The lipoaspirate canisters were main-
within the same person. Thus, the published
tained within the water bath with the other samples
resorption rates vary wildly from 20 to 90
for less than 60 minutes.
The power-assisted liposuction lipoaspirate
Because of such variability in techniques and
canisters were gently stirred into a homogeneous
inconsistencies in resorption rates, the ability to
mixture, and one 15- to 20-ml sample was drawn
efficiently harvest large quantities of viable fat cells
into a Viafill syringe to serve as a control. Each
continues to be of great interest. In 2001, we re-
Viafill syringe was then placed into a filtered Viafill
ported a method for obtaining the maximum
centrifuge tube (Figs. 1 through 3) and placed
number of viable fat cells to be used for grafting.19
within the specially fitted 50-g centrifuge (Lipose).
Since that study, our approach has been that of
All tubes were spun at 50 g for 2 minutes. The
hand aspiration; low-g-force, short-duration cen-
filtered Viafill centrifuge tube allows the aqueous
trifugation; and use of the lower centrifuged sub-
layer and erythrocytes to flow out of the syringe tip
layer of fat cells for our fat grafting cases. However,
during the centrifugation process, leaving the ad-
the process has been cumbersome and time con-
ipose layer at the bottom, near the tip, and the oil
suming using commercially available equipment.
layer at the top (Fig. 4). One-milliliter samples of
Since that time, the Lipose Corporation (Green-
adipose were taken from the bottom, middle, and
wich, Conn.) has expressed an interest in produc-
top sublayers of the centrifuged fat layer.
ing a line of equipment to facilitate this process.
Each of these samples was then processed
The purpose of the present study is to investigate
with 1 mg/ml of collagenase (collagenase type
the technology of the Viafill (Lipose) fat graftharvest system and to assess lipocyte viability ascompared with our previous results.
PATIENTS AND METHODS
Six female subjects were enrolled in the study.
University of Missouri Health Sciences Institu-tional Review Board approval was obtained beforepatient enrollment. The average age of the sub-jects was 36 years (range, 24 to 47 years). None ofthe patients had significant medical histories andnone had undergone previous liposuction or bodycontouring procedures. Half of the subjects hadliposuction on bilateral upper and lower hips, andhalf had liposuction on bilateral lower hips alone,for a total of 18 body areas. Hand lipoaspirate andpower-assisted lipoaspirate specimens were ob-tained from each body area.
Fig. 1. The syringe and filter of the Viafill (Lipose) system pro-
For each patient, our standard tumescent fluid
totype are shown. The same syringe used for harvest is placed
(1 ml of 1:1000 epinephrine and 50 ml of 1% lido-
within the filtered centrifuge tube and also can be used for
caine per liter of lactated Ringer's solution) was in-
distribution of the fat to smaller syringes for injection. After
jected into the harvest site. Fat was aspirated by hand
hand suctioning, the syringe is placed into the filter for
using the Viafill system with a 2.10-mm ⫻ 12-cm
Plastic and Reconstructive Surgery • October 2010
Fig. 2. A syringe from the Viafill system with a plunger handle in
Fig. 4. Viafill syringe and centrifuge tube after centrifugation.
place and a syringe with the plunger unlocked and removed.
Note that the heavier aqueous layer and erythrocytes (arrow)have passed out of the syringe through the filter and the adiposeand oil layers remain.
Statistical analysis was completed with assis-
tance from the Division of Biostatistics, Universityof Missouri. All statistical analysis was performedusing SAS v9 (SAS Institute, Inc., Cary, N.C.). Sub-group analysis was performed based on body area(upper or lower hips), laterality (right or left), andthe sublayer from within the centrifuged adiposelayer from which the specimen was taken (bottom,middle, or top).
The cell counts were skewed to the high end
(i.e., few values were close to 0). We thereforefound it useful to analyze the data using the
Fig. 3. The centrifuge prototype of the Viafill (Lipose) system
square-root transformation of the cell counts. Dif-
prototype is shown with two filters and syringes in place.
ferences between square-root transformationswere then averaged. Because measurements weretaken on the same patient, there are dependencies
1, filtered; Worthington, Lakewood, N.J.) in a
in the data attributable to multiple observations
warm water bath. After 1 hour of collagenase
on the same subject. Consequently, the patient was
digestion, the specimens were diluted 1:1 with
included in the analysis as a random effect and a
trypan blue vital stain 0.4% solution (product
mixed model analysis of variance was carried out.
T8154; Sigma, St. Louis, Mo.). A 100-l samplewas taken from each digested and stained prep-aration and the numbers of viable fat cells were
counted with a hemocytometer under 400⫻ mag-
Table 1 lists the mean and median cell counts
nification. Five different squares from the hemo-
for each centrifugate adipose sublayer from each
cytometer grid were recorded three separate times
body area and by harvest method. One body area
for each 100-l sample. After the trypan blue di-
in one patient had abnormally low cell counts;
lution was factored in, the number of viable fat
otherwise, the counts were distributed normally.
cells from each sample was determined. This fat
The outlier was not found to adjust conclusions
cell quantification method has been used previ-
when left out or when kept in and was considered
ously by our laboratory and has been described by
insignificant. Figure 5 shows a box plot of the
Moore et al.19,20
square root transformation of the cell counts from
Volume 126, Number 4 • Fine Tuning Lipoaspirate Viability
Table 1. Lipocyte Cell Counts*
PAL, power-assisted liposuction.
*Lipocyte cell counts (in millions of cells per milliliter) separated by centrifuge sublayer (bottom, middle, and top), location (upper or lowerhip), and method of harvest (PAL or hand aspirate).
each centrifugate sublayer of the hand and power-
assisted liposuction aspirates.
Debate continues in the literature as to the
In all body areas, the hand aspirate samples
best method of fat graft harvest. Despite the ab-
had significantly higher mean cell counts than
sence of an undisputed best method for long-term
power-assisted liposuction samples (p ⬍ 0.0001).
volume restoration, a consensus seems to have
As expected, the laterality, right compared with
developed. A recent survey has shown that a total
left, did not have a significant effect (p ⫽ 0.90).
of 70 percent of plastic surgeons performing fat
Consistent with our previous work, the cell counts
grafts use either the Coleman technique or an-
at the bottom of the centrifugate fat sublayer were
other atraumatic syringe aspiration technique, 54
greater than those of the middle sublayer, which
percent and 16 percent, respectively.21 In addi-
were greater than those of the top sublayer (p ⬍
tion, nearly half of these surgeons (49 percent)
0.0001). Somewhat surprisingly, the upper hip
use centrifugation as opposed to other techniques
area had significantly greater cell counts com-
of fat preparation such as washing or gravity.21 As
pared with the lower hip (p ⫽ 0.0003).
mentioned, there are many conflicting publica-
Considering all sublayers and all body areas by
tions comparing the different techniques for fat
square-root analysis, the hand aspirate samples
graft harvest. It is beyond the scope of this article
had greater numbers of viable cells than power-
to revisit all of these studies. However, our results
assisted liposuction samples (mean difference in
do reinforce the current consensus view, using
square roots, 1.62; 95 percent CI, 1.35 to 1.90).
centrifugation and atraumatic harvest.
Similarly, the mean of the square roots from the
Disagreement continues to surround the
bottom sublayer was greater than that of the mid-
centrifugation of the lipoaspirate before graft-
dle sublayer (0.95; 95 percent CI, 0.61 to 1.3), and
ing. In 2008, Kurita et al. found a decrease in
the mean of the middle sublayer was greater than
potentially detrimental erythrocytes, but found
that of the top sublayer (0.67; 95 percent CI, 0.50
no difference in viable adipose cells after cen-
to 0.84). By syllogism, the bottom sublayer square-
trifugation at 1200 g.22 However, the authors did
root transformation was also greater than that of
not make a distinction between the sublayers of
the top sublayer (mean difference, 1.62; 95 percent
centrifuged fat. The filter system in the Lipose
CI, 1.45 to 1.79). The mean difference in square-root
centrifugation tube allows erythrocytes to be re-
transformations from the upper hip area compared
moved with the aqueous layer, thus addressing the
with the lower hip area was statistically significant at
potential erythrocyte problem. This makes avail-
1.63 (95 percent CI, 1.47 to 1.80).
able the direct transfer of the highest quantity of
Plastic and Reconstructive Surgery • October 2010
Fig. 5. Box plot of the square-root transformation of adipose cell counts
for hand aspirate and power-assisted liposuction (PAL). The area of har-
vest was ignored; therefore, there are 18 samples (12 lower and six upper
hip) represented by each box plot. Both groups were separated into the
bottom, middle, and top centrifuged samples. Box demarcates the first
and third quartiles; ⫹, mean; –, median; asterisks, outliers.
viable fat cells from the capture syringe to an in-
head comparison would be flawed because the
jection syringe for grafting. Our current study re-
power-assisted liposuction samples represent the
confirms our previous work (Boschert et al.) and
average cell counts from a larger volume of aspi-
that of Butterwick that low-force, short-duration
rate. Regardless, it was not our intent to compare
centrifugation does increase viable adipose cell
power-assisted liposuction to Lipose syringes per
counts.19,23 In addition, we have reconfirmed our
se, but merely to show whether the Lipose system
finding that viable cell density is greater at lower
is efficient and user-friendly while maintaining
sublayers of centrifuged fat.
cell counts similar to our previous work. Despite
The purpose of the study was not to perform
the introduction of potential confounding vari-
a head-to-head comparison of harvest techniques;
ables, order of harvest and volume of harvest, the
thus, no "true" control group was created. We are
present study found that atraumatic hand aspira-
convinced from our previous work and that of
tion provides 150 percent greater viable fat cells
others that atraumatic hand aspiration is superior
relative to conventional liposuction.
to other methods (e.g., power-assisted liposuction
It was not the intention of our protocol to
or conventional liposuction).19,24 Nevertheless, in
investigate the superiority of donor sites for fat
this study, atraumatic hand aspiration provided a
grafting. Recently, such a study has been per-
greater number of viable fat cells relative to con-
formed. Rohrich et al. compared thigh, knee,
ventional liposuction. This finding is limited by
flank, and abdominal donor sites.25 They found no
our harvesting of the hand-aspirated samples first
difference in viable adipocytes obtained from
in all body areas and the larger volume of power-
these areas. Surprisingly, our results seem to con-
assisted liposuction aspirate. Although this has not
tradict this finding, and other studies would sug-
been studied previously, the order of harvest could
gest a potential difference among donor sites.
potentially have an effect on cell numbers. The
Padoin et al. examined the effect of donor site on
first pass of liposuction might obtain higher fat cell
quantity of mesenchymal stem cells in fat aspirates
counts because of less trauma or could obtain
and found significant differences between some
lower numbers because of the dilutional effect of
regions.26 In our patients, the upper hip area adi-
the tumescent fluid. This would be an interesting
pocyte cell counts were significantly higher than
concept for future study. In addition, a head-to-
those of the lower hip. It is important to note our
Volume 126, Number 4 • Fine Tuning Lipoaspirate Viability
small patient sample size and that both areas
grafting procedures, these clinical answers are on
were harvested in only half of the patients. Al-
the horizon.
though statistical significance was reached, withthis small sample we feel that the potential dif-ferences in donor sites should be the focus of
This study reconfirms our early findings that
As mentioned previously, we have been dissatis-
atraumatic harvest of fat grafts continues to yield
fied with the commercially available equipment for
high viable cell counts and that the adipose cell
fat graft harvest, centrifugation, and grafting. The
density is greatest at the lowest level of centrifuged
Viafill system relieves many of these complaints. A
fat. The Viafill system provides an efficient and
single 20-ml syringe is connected by means of a Luer
user-friendly system for fat graft harvest while
lock to a harvesting cannula of choice. After the
maintaining cell counts similar to those of our
sample is acquired, the syringe is then secured into
technique using conventional equipment.
a filtered centrifuge holder and the plunger handle
Charles L. Puckett, M.D.
is removed. During centrifugation, the aqueous
Division of Plastic Surgery
layer and erythrocytes are filtered from the syringe
University of Missouri
into the centrifuge holder. With the plunger handle
One Hospital Drive
reattached, the same syringe can be connected to
Columbia, Mo. 65212
smaller syringes (connectors provided) that canthen be used for grafting.
When comparing the results of this work to
our previous studies, the Viafill system did yield
1. Coleman SR. Facial recontouring with lipostructure. Clin
greater cell counts, 20 compared with 8 million
Plast Surg. 1997;24:347–367.
cells per milliliter. Obviously, such a comparison
2. Coleman SR. Hand rejuvenation with structural fat grafting.
is scientifically flawed and therefore statistical
Plast Reconstr Surg. 2002;110:1731–1744.
3. Gatti JE. Permanent lip augmentation with serial fat grafting.
analysis was not performed. However, the differ-
Ann Plast Surg. 1999;42:376–380.
ence in cell count by sublayer (bottom, middle,
4. Guerrerosantos J. Autologous fat grafting for body contour-
and top) was similar. Both studies found the bot-
ing. Clin Plast Surg. 1996;23:619–631.
tom fat sublayer to contain more viable cells than
5. Roberts TL III, Weinfeld AB, Bruner TW, Nguyen K. "Uni-
versal" and ethnic ideals of beautiful buttocks are best ob-
the middle, and the middle to contain more than
tained by autologous micro fat grafting and liposuction. Clin
the top fat sublayer by approximately 150 percent
Plast Surg. 2006;33:371–394.
each. Both studies also found that the bottom fat
6. Rigotti G, Marchi A, Galie M, et al. Clinical treatment of
sublayer has 2.5 to 3 times more viable cells relative
radiotherapy tissue damage by lipoaspirate transplant: A
to the top fat sublayer. Thus, a gradient exists, with
healing process mediated by adipose-derived adult stem cells.
Plast Reconstr Surg. 2007;119:1409–1422.
the density of viable cells increasing from top to
7. Phulpin B, Gangloff P, Tran N, Bravetti P, Merlin JL, Dolivet
bottom of the centrifugate fat layer.
G. Rehabilitation of irradiated head and neck tissues by
This study is limited by the lack of confirma-
autologous fat transplantation. Plast Reconstr Surg. 2009;123:
tion of viable cell counts obtained with trypan blue
8. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a
staining with other methods. For example, 3-(4,5-
source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–
dimethylthiazol-2-yl)-2,5-diphenyl tetra sodium
bromide or glycerol-3-phophatase dehydrogenase
9. Strem BM, Hicok KC, Zhu M, et al. Multipotential differen-
assays would have to be performed for the absolute
tiation of adipose tissue-derived stem cells. Keio J Med. 2005;
viable cell counts to be comparable to other works.
10. Mischen BT, Follmar KE, Moyer KE, et al. Metabolic and
A viable cell count is not the only factor pre-
functional characterization of human adipose-derived stem
dicting the success of fat grafting techniques.
cells in tissue engineering. Plast Reconstr Surg. 2008;122:725–
Peer's cell survival theory has scientific merit but
certainly does not account for all the variables
11. Peer LA. Cell survival theory versus replacement theory. Plast
Reconstr Surg. 1955;16:161–168.
involved.11 The popularity of cell counts as the
12. Billings E Jr, May JW. Historical review and present status of
endpoint for fat graft research is certainly related
free fat graft autotransplantation in plastic and reconstruc-
to the ease by which they can be obtained. Adipose
tive surgery. Plast Reconstr Surg. 1989;83:368–381.
cell volume, area of harvest, method of grafting,
13. Sommer B, Sattler G. Current concepts of fat graft survival:
recipient location, and person-to-person variabil-
Histology of aspirated adipose tissue and review of the lit-erature. Dermatol Surg. 2000;26:1159–1166.
ity all will affect the success of fat grafting proce-
14. Coleman SR. Structural fat grafts: The ideal filler? Clin Plast
dures. Possibly, with the renewed popularity of fat
Plastic and Reconstructive Surgery • October 2010
15. Coleman SR. Structural fat grafting: More than a permanent
short- and long-term results. Plast Reconstr Surg. 2007;119:
filler. Plast Reconstr Surg. 2006;118:1085–1205.
16. Nguyen A, Pasyk KA, Bouvier TN, Hassett CA, Argenta LC.
22. Kurita M, Matsumoto D, Shigeura T, et al. Influences of
Comparative study of survival of autologous adipose tissue
centrifugation on cells and tissues in liposuction aspirates:
taken and transplanted by different techniques. Plast Reconstr
Optimized centrifugation for lipotransfer and cell isolation.
Plast Reconstr Surg. 2008;121:1033–1041.
17. Boyce RG, Nuss DW, Kluka EA. The use of autogenous fat,
23. Butterwick KJ. Lipoaugmentation for aging hands: A com-
fascia, and nonvascularized muscle grafts in the head and
parison of the longevity and aesthetic results of centrifuged
neck. Otolaryngol Clin North Am. 1994;27:39–68.
versus noncentrifuged fat. Dermatol Surg. 2002;28:987–991.
18. Mattsudo PK, Toledo LS. Experience of injected fat grafting.
24. Pu LL, Coleman SR, Cui X, Ferguson RE Jr, Vasconez HC.
Aesthetic Plast Surg. 1988;12:35–38.
Autologous fat grafts harvested and refined by the Coleman
19. Boschert MT, Beckert BW, Puckett CL, Concannon MJ. Anal-
technique: A comparative study. Plast Reconstr Surg. 2008;
ysis of lipocyte viability after liposuction. Plast Reconstr Surg.
25. Rohrich RJ, Sorokin ES, Brown SA. In search of improved fat
20. Moore JH Jr, Kolaczynski JW, Morales LM, et al. Viability of fat
transfer viability: A quantitative analysis of the role of cen-
obtained by syringe suction lipectomy: Effects of local anesthe-
trifugation and harvest site. Plast Reconstr Surg. 2004;113:391–
sia with lidocaine. Aesthetic Plast Surg. 1995;19:335–339.
395; discussion 396–397.
21. Kaufman MR, Bradley JP, Dickinson B, et al. Autologous fat
26. Padoin AV, Braga-Silva J, Martins P, et al. Sources of pro-
transfer national consensus survey: Trends in techniques for
cessed lipoaspirate cells: Influence of donor site on cell con-
harvest, preparation, and application, and perception of
centration. Plast Reconstr Surg. 2008;122:614–618.
Customer Service Contact Information
All correspondence concerning business matters, including subscription information, orders, or changes ofaddress, should be directed to:
Lippincott Williams & Wilkins16522 Hunters Green ParkwayHagerstown, MD 21740-2116Tel: 800-638-3030Fax: 301-824-7390Email: [email protected]
Source: http://item.com.tr/wp-content/uploads/Fine-Tuning-Lipoaspirate-Viability-for-Fat-Grafting.pdf
Prepared on behalf of IHPA Note from Editors 1. Malaria - tiny mosquito that daunts the world 2. POPs contaminated sites 3. European Commission, Environment DG May 1, 2009 4. Conference of Parties COP4 to Stockholm Convention: Geneva, May 4-8, 2009 5. Brief notes on a HCH contaminated site in Brazil: Environmental (in)justice? 6. Obsolete pesticides a ticking time bomb and why we have to act now
INTER-AMERICAN DEVELOPMENT BANK Universidad Nacional de Colombia - Sede Manizales Instituto de Estudios Ambientales INFORMATION AND INDICATORS PROGRAM FOR DISASTER RISK MANAGEMENT IADB - ECLAC - IDEA EXECUTION OF COMPONENT II Indicators for Disaster Risk Management OPERATION ATN/JF-7907-RG